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Auction No. 66 - Advanced Wireless Services (AWS-1) 
Attachment B 

Using the Smoothed Anchoring Method to Obtain Current Price Estimates 

This appendix describes the method by which bid information on packages and licenses is used to 
approximate a “price” associated with each license at the close of every round. These “current ’ 
price estimates” (“CPEs”) are then used in the next round when calculating minimum acceptable 
bid amounts. Specifically, for a license, this value is the CPE of the license plus a percentage. 
For a package, the minimum acceptable bid amount is the sum of the minimum acceptable bid 
amounts of its component licenses. 

The current price estimates of the licenses are based on the concept that every linear optimization 
problem has a dual problem that provides pricing information. We begin by discussing a 
simplified representation of the FCC winner determination problem and then discuss its linear 
programming relaxation before explaining the dual problem of interest. The winner 
determination problem is shown in (F‘l): 

max c b j x j  
jsB‘ 

si. c a,xj =I ,  for all iE L (1) 
jeB‘ 

x, E {O,I}, for all j E B‘ 

where E‘ is the set of considered bids in round t, 
bj is the bid amount of bid j ,  
L is the set of licenses being auctioned, - 

} and, 
1 , if license i is in bid j 

1 ,if bid j is in the winning set 
0 ,otherwise 

x ,  = {  

In this formulation, xj is an indicator variable that equals one if bid j is in the provisionally 
winning set and zero otherwise. Thus, the sum of the bid amounts of all provisionally winning 
bids produces the maximum obtainable revenue for round t. Constraints (1) ensure that each 
license is awarded exactly once. The constraints that ensure that a bidder’s bids between rounds 
are mutually exclusive are not represented in (Pl) since they will be ignored in the linear 
representation of the problem.’ 

’ These constraints will be ignored in the linear program representation since they are rarely binding in the 
relaxation of the integer-programming problem and because adding such constraints to the dual problem 
creates “degeneracy” in the solution thereby causing multiple alternative solutions. 



The linear program of (Pl) relaxes the restriction on the variables xj, for all j d ‘ ,  allowing these 
variables to take on any value between zero and one. The linear programming representation of 
(PI) is shown in (P2): 

max E bjxj 
jCB’ 

(P2): s.t. c a,xj = 1, for all i E L 
j sB’  

x j  20, for dl ~ E B ’  

The dual formulation of (P2) can be used to identify a price, c, for each license i, and is shown in 
the following linear program (P3): 

s i .  aji7ri 2 bj ,  for all j E B‘ \ F 
P3): i sL  

7ri 2 bj ,  for all j E F 

and i is the license index associated with bid j (3) 

where F c  B‘ is the set of FCC bids on each license’ and, 
1 ,if bid j contains license i 

a , .  = 1. ” { 0 ,otherwise 

The optimal value of each variable, c, in (P3) corresponds to a dual price’ - often called a 
“shadow price” - for each constraint, i.e., each license, in (P2). The dual price of each license 
measures the monetary cost of not awarding the license to whom it has been provisionally 
assigned under the solution to (P2). Thus, this monetary cost has a clear and natural use in 
estimating the current price of a license given the bids considered in the current round. 

Constraints (2) in (p3) ensure that the dual price of a license must be at least as large as the 
greatest bid made on that license. For a package, these constraints ensure that the sum of the dual 
prices of the licenses that make up a particular package must be at least as large as the greatest 
bid made on that package. Constraints (3) in (P3) ensure that if a license has not been bid on, the 
dual price of that license is at least as large as the FCC bid amount. 

Ideally, the solution to (P2) is identical to the solution of (Pl). When this occurs, the sum of the 
dual prices of the licenses comprising any provisionally winning bid equals the winning bid 
amount. However, (P2) is only an approximation to the integer problem4 and often overestimates 

The system maintains an FCC bid amount at some small amount less than the minimum opening bid for 
that license, in order to avoid ties with bids at the minimum opening bid amount. 

We note that for non-linear problems, these dual prices are also known as Lugrange multipliers. ‘ When the problem is a convex optimization problem, the primal and dual problems yield the same 
objective function values. This is called strong-duality. These conditions do not hold for integer 
programming problems, often resulting in a gap between the linear programming and integer programming 
solution values. 
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the maximum revenue of (Pl). When this occurs, the sum of the dual prices of the licenses in at 
least one provisionally winning bid will be greater than the respective bid amount. Thus, using 
the dual prices of (P3) can result in minimum acceptable bid amounts that are too high. 

We propose to resolve this issue by usingpseudo-dua[prices,’ rather than the dual prices of (P3). 
These pseudo-dual prices are obtained by forcing the sum of the dual prices of the licenses 
comprising a provisionally winning bid to equal its respective bid amount. For example, suppose 
there are two bids in the provisionally winning set in round t: a bid on license A for $10 and a bid 
on package BC for $25. The pseudo-dual price of A would exactly equal $10 and the sum of the 
pseudodual prices of B and C would exactly equal $25. These restrictions ensure that the sum of 
the pseudo-dual prices equals the maximum revenue for the round (e.g. $35) and that minimum 
acceptable bid amounts reflect the bid amounts of bids in the provisionally winning set. 

Pseudodual prices for each license i ,  denoted zj, satisfy the following constraints: 

i d  

xi 2bj ,  for all j E F \ (W‘ n F )  
and i is the license index associated with bid j (6) 

6, 20, for all j E B‘ \ (W‘ uF) (7) 

where V c B ’  is the provisionally winning bid set in round f and, 
4 is a slack variable that represents the difference between the bid amounts of 
non-winning bidj  and the sum of pseudo-dual prices of the licenses contained 
in non-winning bid j 

Constraints ( 5 )  ensure that for each provisionally winning bid, the sum of the dual prices of the 
licenses comprising that bid equal its respective bid amount. This new restriction requires that we 
ease restriction (2) in (P3) for non-winning bids in order to ensure that a feasible solution exists. 
Constraints (4) provide this needed slack. Constraints (6)  are equivalent to constraints (3) in (P3) 
and constraints (7) force the slack variables to be non-negative. 

Satisfying constraints ( 5 )  implies that the sum of the pseudodual prices always yields the 
maximum revenue for the round. There are likely to be many sets of pseudodual prices that 
satisfy this constraint set. For instance, in the example provided earlier, the pseudodual prices of 
B and C might be any two numbers that together sum to $25. 

By keeping constraints (4)-(7), we have the flexibility to choose an objective function that will 
help in selecting among multiple solutions while still ensuring that the sum of the pseudodual 
prices yields the maximum revenue of the round. We would like an objective function that 
minimizes the values of the slack variables 4, for all jc B‘ 1 @ uF) in order to obtain pseudo- 

’ In OUT research we found this tern fmt applied to auction pricing in the paper by Rassenti, Smith and 
Bulfin (1982), “A combinatorial auction mechanism for airport slot allocatiob” Bell Journal ofEconomicr, 
vol. 13, pp. 402-417. 
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dual prices that are close to the dual prices of (€3). We have tested a number of alternative 
objective functions: 

1. Minimization of the maximum 4 for a l l j d ‘  I (a” uF) followed by maximization of 
the minimum q for all i in license set L,  in an iterative manner. (DeMartini, 
Kwasnica, Ledyard and Porta, 1999) 

2. Minimization of the sum of the squares of 4 for all j& I (FV’ uF). (also DeMartini, 
Kwasnica, Ledyard and Porter, 1999) 

3. Minimization of the sum of the 4 for all jd‘l (a” u F )  using a “centering” 
algorithm6 to solve, essentially finding an average among all sets of optimal pseudo- 
dual prices. 

In testing the above alternatives, we frequently observed instances where the pseudo-dual price of 
a license significantly changed from round to round. We acknowledge that prices of licenses 
should be allowed to reflect real changes, both increases and decreases, in the way bidders value 
the licenses over time. However, we believe that large oscillations in minimum acceptable hid 
amounts for the same bid that are due to irrelevant factors such as multiple optimal solutions, can 
be confusing to bidders. We have therefore chosen a method that attempts to balance minimizing 
the slack variables and reducing the fluctuations in pseudo-dual prices from round to round. This 
method requires solving two optimization problems, the first of which is alternative 3 above, 
which we present as (P4): 

d = m i n  C 6, 

sf. ~ u j i n i +  6, >b,,foralljeB‘\(W‘uF) 
jsE’\(WuF) 

id 

id 

xi >bj, foralljGF\(W nF) 

and i is the license index associated with bid j 
6, 20, for all j E B ‘ \ ( W u F )  

Since multiple optimal solutions can exist to (P4) we solve a second optimization problem that 
chooses a solution in a way that reduces the magnitude of price fluctuations between rounds. 
Specifically, we use an objective function that applies the concepts of exponential smoothing’ to 
choose among alternative pseudo-dual prices with the additional constraint on the problem that 
the sum of the slack variables equals R’(the optimal value of (P4)). This objective function 
minimizes the sum of the squared deviations of the resulting pseudo-dual prices in round t, from 
their respective smoothed prices in round t-l.* At the start of the auction, we use the minimum 
opening bid prices as the prior smoothed prices. Since these opening prices are based on 

The centering algorithm used in this testing was the barrier method available in CPLEX, a commercial 
optimization package. ’ Exponential smoothing often is used in determining minimum acceptable bids in FCC auctions. See 
Attachment C of this Public Notice. 
* This objective function is a convex, quadratic function. This quadratic optimization problem is solved 
using the quadratic simplex method. 
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bandwidth and population, the pricing algorithm begins with apriori information about the 
differences among licenses. 

Let z,! be the pseudo-dual price of license i in round t. The smoothed price for license i in round 

t is calculated using the following exponential smoothing formula: 

p ;  = az,! + (1 - a)p:-l 

where pj-' is the smoothed price in round t-1, 
O < a < l , a n d  
p,? = the minimum opening bid amount for license i. 

Consistent with prior practice of the Commission, a weighting factor of a = 0.5 has been chosen 
but can change, as the Commission requires. 

The following quadratic program (QP) will find the pseudo-dual price, for each license i in 
round t that minimizes the sum of the squared deviations from the respective smoothed prices in 
round t-1 while ensuring that the pseudo-dual prices sum up to the provisionally winning bid 
amounts and that the sum of the slack variables is minimized. 

i d  

s.t Cajin,!+ Sj >bj ,  foral l jeB' \ (W'uF) 
ieL 

ni > b j ,  for all j E F\ (W nF)  

and i is the license index associated with bid j 

si 2 0 ,  for all ~EB' \ (FV'UF)  

where pi-' is known and treated as a constant within the optimization? 

Among alternative prices that satisfy all constraints, the objective function of this optimization 
problem chooses one that forces the pseudo-dual prices to be as close as possible to the previous 
round's smoothed price. Thus, we call this the Smoothed Anchoring Method since we "anchor" 
on the smoothed prices when solving for the pseudo-dual prices. We define the CPE for license i 
in round f as the pseudodual price, z,! , obtained by solving (QP). 

9 Once the pseudo-dual prices, z,! , have been determined, the smoothed prices, p,! , can be calculated and 
used for solving (QP) in round f+f .  
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The minimum acceptable bid amount for a license in round t+Z will be the CPE of the license, as 
calculated above, plus a percentage. For a package, the minimum acceptable bid amount will be 
the sum of the minimum acceptable bid amounts of the licenses that make up the package. 
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Auction No. 66 - Advanced Wireless Services (AWS-1) 
Attachment C 

Smoothing Formula Equations 

Ai (C * Bi) + ((1-C) * Ai.,) 

I,+] = smaller of ((1 + Ad * N) and M 
x. = I .  ,+I ,+I * Yi 

where, 

Ai = activity index for the current round (round i) 

C =activity weight factor 

Bi = number of bidders submitting bids on the licenses in 

Ai., = activity index from previous round (round i-1), & is 0 
= percentage increment for the next round (round i+l) 

: current round (round i) 

N = minimum percentage increment or percentage increment floor 
M = maximum percentage increment or percentage increment ceiling 

Xi+] = dollar amount associated with the percentage increment 

Yi =provisionally winning bid amount from the current round 

Examples 

License 1 
C=O.S,N=O.l,M=0.2 

Round 1 (2 bidders submittine bids. trovisionallv winning bid = $1.000.000~ 

1. Calculation of percentage increment for round 2 using the smoothing formula: 
AI = (0.5 * 2) + (0.5 * 0) = 1 
Iz = The smaller of ((1 + 1) * 0.1) = 0.2 or 0.2 (the maximum percentage increment) 

2. Calculation of dollar amount associated with the percentage increment for round 2 (using Iz from 
above): 

x* = 0.2 * $1,000,000 = $200,000 

3. Minimum acceptable bid amount for round 2 = $1,200,000 

Round 2 (3 bidders submittinn bids. urovisionallv winning bid = $2,000,000~ 
1. Calculation of percentage increment for round 3 using the smoothing formula: 

A2 = (0.5 * 3) + (0.5 * 1) = 2 
I3 =The smaller of ((1 + 2) * 0.1) = 0.3 or 0.2 (the maximum percentage increment) 

2. Calculation of dollar amount associated with the percentage increment for round 3 (using I3 from 
above): 

X3 = 0.2 * $2,000,000 = $400,000 
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3. Minimum acceptable bid amount for round 3 = $2,400,000 

Round 3 (1 bidder submittine bids. Drovisionallv winnine, bld = $2,400,0001 

1. Calculation of percentage increment for round 4 using the smoothing formula: 
A3 = (0.5 * 1) + (0.5 * 2) = 1.5 
4= The smaller of ((1 + 1.5) * 0.1) = 0.25 or 0.2 (the maximum percentage increment) 

2. Calculation of dollar amount associated with the percentage increment for round 4 (using 
above): 

from 

%= 0.2 * $2,400,000 = $480,000 

3. Minimum acceptable bid amount for round 4 = $2,880,000 
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